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Note: Counterintuitive gauge-dependence of nuclear magnetic resonance
shieldings for rare-gas dimers: Does a natural gauge-origin for spherical
atoms exist?
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Nowadays calculations of nuclear magnetic resonance
(NMR) shieldings are usually performed using special tech-
niques [mostly gauge including atomic orbitals (GIAO) but
also individual gauge for localized orbitals (IGLO) and oth-
ers] to overcome the so-called gauge-origin problem: depen-
dence of the results, obtained with the finite bases, on the
gauge origin of the vector potential due to an external mag-
netic field. It is still surprising how much can sometimes be
learned from “outdated” calculations of NMR shieldings with
a common gauge origin (CGO). This is especially true when
calculations lead to counterintuitive results as in the case of
fully relativistic calculations of NMR shieldings in a xenon
dimer (with RXe—Xe = 20 Å).1 In particular, the shift rela-
tive to an isolated Xe atom was larger for the Xe placed at
the CGO position than for the other nucleus (for which GIAO
shieldings were equal to that of an isolated Xe atom). This
finding contradicts the intuitive expectation that better results
should be obtained for the nucleus at the CGO position.2

Since we have verified that this surprising gauge-dependence
of the relativistic results is very similar in nonrelativistic cal-
culations (regardless of the large difference in the absolute
shieldings), below we will analyze this observation in detail
using a more convenient nonrelativistic approach.3

The nonrelativistic results for the calculated Xe shield-
ings for the isolated Xe and xenon dimer are presented in
Table I. The CGO was chosen at the position of the first xenon
atom. The Xe–Xe distance in xenon dimer was taken to be
10, 20, and 200 Å to show the distance dependence of the ef-
fect. Despite the small values, the deviation from the shielding
of the isolated Xe atom is clearly larger for the first nucleus
(placed at the CGO position). The same trend was also found
for other rare-gas dimers. For the nucleus at the CGO position
shift with respect to an isolated atom turns out to be inversely
proportional to the distance to the other atom, giving spuri-
ously large shifts at shorter distances. For the shift at the other
atom the values are all very close to the isolated atom value.
This dependence displayed in Table I is counterintuitive be-
cause one would expect that the best choice for a common
gauge position would be on the position of the atom where
one wishes to measure the chemical shielding. Where is the
catch?

The key point is that despite common belief there is no
natural gauge origin for an isolated atom with a spherical

distribution of the electron density. The NMR shielding of a
spherical atom is gauge-origin independent even for a finite
basis set! The same holds for the separate diamagnetic and
paramagnetic contributions (the latter is always equal to zero).
This contradicts some statements made earlier in literature.4

Exactly, this wrong common belief leads us to conceive these
results for rare gas dimers as counterintuitive. Below we will
prove the above statement and explain the observed gauge-
dependence of NMR shieldings for rare-gas dimers.

Let us first consider the gauge dependence separately for
the paramagnetic and diamagnetic contributions in the case of
an atom with spherically symmetric distribution of the elec-
tron density. The usual argument is that, when the gauge for
the uniform external magnetic field is chosen at the position
of the nucleus of interest, the paramagnetic current vanishes
and thus the whole paramagnetic contribution also vanishes.
It is then assumed that this is not the case for a different po-
sition of the gauge because then the paramagnetic current
is nonzero. This argument is, however, incorrect as can be
shown by applying Dalgarno’s exchange theorem5 and tak-
ing the magnetic field due to the nuclear magnetic moment
as the primary perturbation. While the magnetic field due to
the external magnetic field depends on the gauge origin G,
the vector potential due to the nuclear magnetic moment does
not:6

AG = 1

2
B × rG, AN = m × rN

r3
N

. (1)

With the “natural gauge” (N) for AN the paramagnetic cur-
rent vanishes for a spherical atom even in the case of a finite
basis set. As a result there is never a paramagnetic current
to interact with the external magnetic field and the param-
agnetic contribution to the shielding of a spherical atom is
gauge independent and equal to zero. Since the sum of dia-
magnetic and paramagnetic contributions must be gauge in-
variant in the limit of infinite basis set, one can already deduce
that the diamagnetic contribution should also be gauge origin
independent for spherical atoms. However, one can also prove
this directly.

The usual nonrelativistic diamagnetic operator

hdia
vu = δuv rG · rN − rG,urN ,v

r3
N

(2)
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TABLE I. Isotropic shieldings (in ppm) on 129Xe. Shifts with respect to
the isolated atom are given in parentheses. The common gauge origin has
been chosen on the first Xe atom.

System R (Å) Method First atom Second atom

Xe CGO 5642.18
Xe2 20 GIAO 5642.18 5642.18
Xe2 10 CGO 5669.24 (–27.06) 5642.18 (0.00)
Xe2 20 CGO 5655.71 (–13.53) 5642.18 (0.00)
Xe2 200 CGO 5643.53 (–1.35) 5642.18 (0.00)

can be rewritten in the following form:

hdia
vu = δvur2

N −rN ,urN ,v

r3
N

− δvu(G−N) · rN −(G − N)urN ,v

r3
N

.

(3)

The first term in Eq. (3) is gauge independent since the oper-
ator does not refer to the gauge origin G. For the second term
we should consider the location of the electron density that
contributes to the shielding. We take the expectation value

〈
hdia

vu

〉 =
∫

ρM (r)hdia
vu dV = δvu

(∫
ρM (r)

rN
dV − (G − N)

·
∫

ρM (r)rN
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)
−

(∫
ρM (r) rN ,urN ,v
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−(G − N )u

∫
ρM (r) rN ,v

r3
N

dV

)
, (4)

where we define M as the center of the spherically symmetric
charge distribution. If M coincides with the position of the
nucleus N (M = N; in other words if we want to measure the
“own atom” contribution to the shielding), the gauge-origin
dependent terms disappear because of the odd parity of the
integrands. This proves that for a single spherical atom the
shielding is gauge-origin independent.

Let us now consider the dependence of the diamagnetic
term on the gauge for two noninteracting spherical atoms for
which the formulas derived above can also be used. At dis-
tances as large as 20 Å a direct overlap of atomic orbitals
from different atoms should be negligible, and we should be
able to separate the contributions to the shieldings into two ad-
ditive contributions from the different atoms. We then define
the other atom contribution: the shielding contribution of an
atom with an origin M that does not coincide with N (M �= N).
If the atoms are far enough apart, we may make the approxi-
mation ρM (r) ≈ NMδ(r − M), with NM being the number of
electrons of atom M, and obtain

1

3
�
v
〈hdia

vv 〉 = 2NM

3|M − N| − 2NM (G − N) · (M − N)

3|M − N|3 . (5)

In this case, the diamagnetic shielding does depend on the
gauge origin. If we place the gauge origin at the position of
the measurement (G = N), the last term disappears and an
appreciable shielding with an inverse dependence on the dis-
tance results. This term should of course be compensated by
a paramagnetic contribution of the same magnitude and op-
posite sign. In order to do so the basis set should, however,
be able to represent the first order perturbed wave function

resulting from the effect of an off-center vector potential. In
practice this will not be the case, leading to an underestima-
tion of the paramagnetic contribution. This explains the trend
seen in the fourth column of Table I. The fifth column of the
table corresponds to the case where we place the gauge ori-
gin at the center of the charge distribution (G = M), so that
the two terms of Eq. (5) cancel and the diamagnetic other
atom contribution to the shielding is zero. With this choice
of gauge, the paramagnetic contribution to shielding from a
neighboring atom is also zero. We note that use of London
orbitals or IGLO will effectively move the gauge origin to the
center of the charge density and correspond to this choice of
gauge origin on the second atom.

In conclusion, we would like to make three notes. First,
the considerations discussed above are also applicable to
molecules to some extent. For example, if one chooses
the common gauge origin on one of the carbons in C2H4

molecule, the calculated isotropic shielding for another car-
bon (60.4 ppm) is closer to the GIAO value (61.3 ppm) than
for the first one (67.5 ppm).7 Second, sometimes we are used
to apply an intuitive reasoning that may later be proven to be
wrong. In such cases, as with the notion that the gauge origin
for an external magnetic field is best placed at the position
where one wishes to measure the shielding, it is important to
correct our vision of the problem. Third, the argument that
a spherical atom has a natural gauge at the atom position is a
good justification of the IGLO method for calculation of mag-
netic susceptibilities, but does not directly transfer to NMR
nuclear shieldings. IGLO works well for this property for a
slightly different reason. The orbital localization procedure
will yield a set of roughly spherically symmetric localized
MOs, for which we can conclude (based on the considerations
presented above) that all contributions from those centered on
the nucleus of interest are anyway almost gauge-independent.
The only noticeable gauge dependence comes from the “other
centers” contribution, for which it is important to place the
gauges at the centers of these localized MOs to prevent im-
perfect cancellation of large diamagnetic and paramagnetic
contributions.
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