
Relativistic four-component calculations of indirect nuclear spin-spin couplings with
efficient evaluation of the exchange-correlation response kernel
Anežka Křístková, Stanislav Komorovsky, Michal Repisky, Vladimir G. Malkin, and Olga L. Malkina 
 
Citation: The Journal of Chemical Physics 142, 114102 (2015); doi: 10.1063/1.4913639 
View online: http://dx.doi.org/10.1063/1.4913639 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/11?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A comparison of two-component and four-component approaches for calculations of spin-spin coupling
constants and NMR shielding constants of transition metal cyanides 
J. Chem. Phys. 137, 014311 (2012); 10.1063/1.4730944 
 
Relativistic calculation of indirect NMR spin-spin couplings using the Douglas-Kroll-Hess approximation 
J. Chem. Phys. 123, 204112 (2005); 10.1063/1.2133730 
 
Fully relativistic calculation of nuclear magnetic shieldings and indirect nuclear spin-spin couplings in group-
15 and -16 hydrides 
J. Chem. Phys. 117, 7942 (2002); 10.1063/1.1510731 
 
Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I.
Formalism and scalar relativistic results for heavy metal compounds 
J. Chem. Phys. 113, 936 (2000); 10.1063/1.481874 
 
Relativistic four-component calculations of indirect nuclear spin–spin couplings in MH 4 ( M=C, Si, Ge, Sn, Pb )
and Pb(CH 3 ) 3 H 
J. Chem. Phys. 112, 3493 (2000); 10.1063/1.480504 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.213.105.207 On: Tue, 17 Mar 2015 12:08:23

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/956891792/x01/AIP-PT/JCP_ArticleDL_0315/PT_SubscriptionAd_1640x440.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Ane�ka+K�stkov�&option1=author
http://scitation.aip.org/search?value1=Stanislav+Komorovsky&option1=author
http://scitation.aip.org/search?value1=Michal+Repisky&option1=author
http://scitation.aip.org/search?value1=Vladimir+G.+Malkin&option1=author
http://scitation.aip.org/search?value1=Olga+L.+Malkina&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4913639
http://scitation.aip.org/content/aip/journal/jcp/142/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/1/10.1063/1.4730944?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/1/10.1063/1.4730944?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/123/20/10.1063/1.2133730?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/17/10.1063/1.1510731?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/17/10.1063/1.1510731?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/113/3/10.1063/1.481874?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/113/3/10.1063/1.481874?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/112/8/10.1063/1.480504?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/112/8/10.1063/1.480504?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 142, 114102 (2015)

Relativistic four-component calculations of indirect nuclear spin-spin
couplings with efficient evaluation of the exchange-correlation response
kernel

Anežka Křístková,1 Stanislav Komorovsky,2 Michal Repisky,2 Vladimir G. Malkin,1
and Olga L. Malkina1,3,a)
1Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava,
Slovakia
2Centre for Theoretical and Computational Chemistry, University of Tromsø - The Arctic University of Norway,
N-9037 Tromsø, Norway
3Department of Inorganic Chemistry, Comenius University, Bratislava, Slovakia

(Received 4 December 2014; accepted 16 February 2015; published online 16 March 2015)

In this work, we report on the development and implementation of a new scheme for efficient
calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix
Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolu-
tion of identity for J and K, which takes advantage of the previous restricted magnetic balance
formalism and the density fitting approach for the rapid evaluation of density functional theory
exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the
solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the
exchange-correlation potential. The performance of the new scheme has been tested on a represen-
tative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the
corresponding results of the reference method with traditional evaluation of the exchange-correlation
kernel, i.e., without employing the fitted electron densities. Overall good agreement between both
methods was observed, though the new approach tends to give values by about 4%-5% higher than
the reference method. On the average, the solution of the coupled perturbed equations with the
new scheme is about 8.5 times faster compared to the reference method. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4913639]

INTRODUCTION

Heavy-element chemistry had always been a challenging
area for theoretical chemistry. Nowadays, with the increasing
power of computers and the progress in the development of
quantum chemical programs, calculations of NMR parameters
in heavy-element compounds become increasingly popular.1–7

Since the effects of the electron correlation are often very
important for qualitative prediction of these parameters and
since quite often post-Hartree-Fock calculations are still too
expensive, the Density Functional Theory (DFT) turned out to
be the method of choice. In recent years, significant progress in
the development of relativistic methods and relativistic DFT
programs was made (see, for example, an excellent review
of Belpassi et al.8). From treating relativistic effects with
relativistic effective core potentials and/or using a perturbation
theory to advanced four-component relativistic Hamiltonians,
a tremendous progress had been made.

Several approaches for fully relativistic calculations
of NMR shielding tensors with Gauge Including Atomic
Orbitals (GIAO) and employing (exactly or approximately)
the restricted magnetic balance (RMB) condition for the basis
set were developed and implemented recently. The first code,

a)Author to whom correspondence should be addressed. Electronic mail:
olga.malkin@savba.sk. Telephone: +421-2-59410422.

where RMB was implemented and assessed in the framework
of DFT, is the ReSpect program.9,10 The implementation
was later extended to GIAOs independently by Xiao et al.11

in BDF code,12 and Komorovsky et al.13 in ReSpect. In
BDF, an alternative approach based on the Kutzelnigg’s
transformation14 facilitates the evaluation of NMR shielding
tensor at the fully relativistic level.15 Very recently, the group
of Shiozaki had published their own implementation of RMB
in the framework of Dirac-Coulomb-Gaunt Hamiltonian.16 In
the DIRAC program,17 an alternative treatment of the magnetic
balance condition, termed simple magnetic balance, has been
proposed by the group of Saue.18 Nowadays, efficient imple-
mentation (including extensive parallelization and specially
tailored for RMB integral block such as InteRest19) allows
one routinely to perform fully relativistic calculations of NMR
shielding in large systems up to 100 atoms.20,21

However, fully relativistic four-component DFT calcula-
tions of NMR indirect nuclear spin-spin couplings proved to
be more challenging. To the best of our knowledge, up to now
there exist only two packages allowing one to perform such
calculations: DIRAC with a pilot implementation (mentioned
in Ref. 22) without inclusion of RMB as it was in their first im-
plementation at the four-component Hartree-Fock level23 and
the ReSpect program.24 Though the latter includes advanced
features such as RMB and the finite gaussian-type model for
the nuclear magnetic moment,25 until recently the calculation

0021-9606/2015/142(11)/114102/10/$30.00 142, 114102-1 © 2015 AIP Publishing LLC
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of spin-spin couplings with ReSpect program was much less
efficient than the calculation of NMR chemical shifts. In this
work, we report on the development and implementation of
a new scheme for efficient calculation of indirect nuclear
spin-spin couplings in the framework of four-component
matrix Dirac-Kohn-Sham approach termed mDKS-RMB-RI-
JK (matrix Dirac-Kohn-Sham RMB Resolution of Identity
for J and K), which takes advantage of the previous RMB
formalism and the density fitting (or resolution of identity
RI) approach for the rapid evaluation of DFT exchange-
correlation response kernels. The new approach is aimed to
speedup the bottleneck in the solution of the coupled perturbed
equations: evaluation of the matrix elements of the kernel
of the exchange-correlation potential. A similar technique
was used by Autschbach for the calculation of indirect spin-
spin couplings at the two-component Zeroth-Order Regular
Approximation (ZORA) framework.26

The paper is organized as follows. The theoretical
background of the new method is given in the section
titled “Theory.” Details of our computations are summarized
in “Computational Details” section. Benchmark calculations
demonstrating the accuracy and efficiency of the new method
are described in “Results and Discussion” section. This section
also contains pilot applications to spin-spin couplings in XH4
(X = 13C, 29Si, 73Ge, 119Sn, 207Pb) series and CH4−n(HgX)n (X
= Cl, Br, I, CN) series including assessment of the importance
of solvent effects and comparison to available experimental
data. Finally, the Conclusions are drawn in the last section.

THEORY

Throughout this paper, we use the Hartree system of
atomic units if not noted otherwise. Summation over repeated
indices is assumed and the following index notation is
employed: i, j denote occupied positive energy molecular
orbitals (MOs), a unoccupied positive and negative energy
MOs, p, q all MOs and λ, τ are used for basis function
indices. Cartesian directions are indexed by u, v. Superscripts
L, S denote the large and small component, respectively. If
necessary, subscripts 2 × 2 and 4 × 4 are used to stress that
the corresponding matrices are two- and four-component,
respectively.

Let us start with the expression for the total energy in the
presence of two magnetic fields due to magnetic moments of
nuclei M and N, within the framework of the four-component
Dirac-Kohn-Sham (DKS) approach,

E(µ⃗M, µ⃗N ) =

ϕ
(µ⃗M, µ⃗N )
i

���� D00
kin + D10 + D01 ����ϕ

(µ⃗M, µ⃗N )
i


+ E(µ⃗M, µ⃗N )

pot . (1)

In the following, superscript (µ⃗M, µ⃗N) will indicate depen-
dence on the magnetic moments. The first term on the right-
hand side represents the relativistic kinetic energy in the
presence of magnetic moments µ⃗M and µ⃗N of nuclei M and
N, respectively,

D00
kin ≡ (β − 14×4) c2 + cα⃗ · p⃗,

D10 ≡ α⃗ · A⃗µ⃗M, D01 ≡ α⃗ · A⃗µ⃗N , (2)

where c is speed of light, p⃗ = −i∇⃗ is the momentum operator,
and A⃗µ⃗M is the vector potential due to the magnetic moment
of nucleus M (for the sake of simplicity, here a point model
of the nuclear magnetic moment is assumed; derivation of the
equations in case of a gaussian model for the nuclear magnetic
moment can be found in (25)),

A⃗µ⃗M =
µ⃗M × r⃗M

r3
M

, r⃗M ≡ r⃗ − R⃗M, (3)

where R⃗M is the position of nucleus M. Dirac 4 × 4 matrices
α⃗ and β have the usual form,

α⃗ = *
,

0 σ⃗

σ⃗ 0
+
-
, β = *

,

σ0 0
0 −σ0

+
-
, (4)

where σ0 ≡ 12×2, and σ⃗ = (σ1,σ2,σ3) is a vector composed
of Pauli matrices,

σ1 = *
,

0 1
1 0

+
-
, σ2 = *

,

0 −i
i 0

+
-
, σ3 = *

,

1 0
0 −1

+
-
. (5)

The orbitals ϕ
(µ⃗M, µ⃗N )
i are composed of two two-component

spinors,

ϕ
(µ⃗M, µ⃗N )
i =

*.
,

ϕ
L(µ⃗M, µ⃗N )
i

ϕ
S(µ⃗M, µ⃗N )
i

+/
-
, (6)

where ϕ
L(µ⃗M, µ⃗N )
i and ϕ

S(µ⃗M, µ⃗N )
i are called the large and

the small component of ϕ
(µ⃗M, µ⃗N )
i , respectively. In Eq. (1),

E(µ⃗M, µ⃗N )
pot is the potential energy, which includes the electron-

nuclear Coulomb energy E(µ⃗M, µ⃗N )
nuc , the electron-electron

Coulomb repulsion E(µ⃗M, µ⃗N )
ee and the Kohn-Sham exchange-

correlation energy E(µ⃗M, µ⃗N )
xc ,

E(µ⃗M, µ⃗N )
nuc ≡ −


M


ZM

rM
ρ
(µ⃗M, µ⃗N )
0 (r⃗) dV, (7)

E(µ⃗M, µ⃗N )
ee ≡ 1

2


ρ
(µ⃗M, µ⃗N )
0 (r⃗)ρ(µ⃗M, µ⃗N )

0 (r⃗ ′)
|r⃗ − r⃗ ′| dV dV ′, (8)

E(µ⃗M, µ⃗N )
xc ≡


ε
(µ⃗M, µ⃗N )
xc


ρ
(µ⃗M, µ⃗N )
k

(r⃗)
3

k=0


dV. (9)

In Eq. (9), ε(µ⃗
M, µ⃗N )

xc is the non-collinear exchange-correlation
energy density, which is a functional of the total electron
density (ρ0) as well as three components of spin-densities
(ρ1, ρ2, ρ3) and their gradients,

ρ
(µ⃗M, µ⃗N )
k

≡ ϕ
(µ⃗M, µ⃗N )
i Σkϕ

(µ⃗M, µ⃗N )
i , k ∈ {0, 1, 2, 3} , (10)

Σk ≡ *
,

σk 0
0 σk

+
-
. (11)

The common way to solve the DKS equations is to expand
the four-component MOs ϕ

(µ⃗M, µ⃗N )
p in a finite set of basis

functions. While the choice of basis set for the large component
is rather straightforward, the selection of basis for the small
component is more difficult and the relation between both basis
sets is crucial to obtain sensible results. In this work, we expand
the small component in RMB basis (as discussed and imple-
mented in Refs. 10 and 24), where not only the coefficients but
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also the basis functions depend explicitly on magnetic fields,

ϕ
S(µ⃗M, µ⃗N )
p = CS(µ⃗M, µ⃗N )

λp χ
S(µ⃗M, µ⃗N )
λ , (12)

χ
S(µ⃗M, µ⃗N )
λ =

1
2c

(σ⃗ · p⃗ + 1
c
σ⃗ · A⃗µ⃗M +

1
c
σ⃗ · A⃗µ⃗N)χλ, (13)

and ϕ
L(µ⃗M, µ⃗N )
i as a linear combination,

ϕ
L(µ⃗M, µ⃗N )
p = CL(µ⃗M, µ⃗N )

λp χλ, (14)

where { χ} is a common magnetic field-independent atomic
basis set.

NMR indirect spin-spin coupling tensor JMN is propor-
tional to the reduced indirect spin-spin coupling tensor KMN

(here written in the International System of Units),

JMN = h
γM

2π
γN

2π
KMN . (15)

Above, γM and γN represent gyromagnetic ratios of the
coupled nuclei M and N, respectively, and KMN is defined
as the second derivative of the electronic energy with respect
to nuclear magnetic moments µ⃗M and µ⃗N ,

KMN
uv =

d2E(µ⃗M, µ⃗N )

dµM
u dµN

v

������µ⃗M=µ⃗N=0

. (16)

Assuming that the higher-order effects of nuclear magnetic
moments are small, we will use the second-order perturbation
theory for the calculation of indirect nuclear spin-spin
coupling tensor. In the equations below, the superscripts
[(00), (10)Mu , and (01)Nv ] denote the order of response with
respect to the magnetic moments of nuclei M and N ,
respectively. The bilinear derivative of energy (Eq. (1)) can
be expressed as

KMN
uv =


ϕ
(10)Mu
i

���D
(01)Nv ��� ϕ

(00)
i


+


ϕ
(00)
i

���D
(01)Nv ��� ϕ

(10)Mu
i


,

(17)

where

ϕ
(10)Mu
i =

dϕ(µ⃗M, µ⃗N )
i

dµM
u

�������µ⃗M=µ⃗N=0

,

D(01)Nv =
dD01

dµN
v

�����µ⃗M=µ⃗N=0
. (18)

The linear response spinor ϕ(10)Mu
i is the key point in the calcu-

lation of second-order properties. Since in the RMB ansatz,
the four-component MO depends on magnetic fields both via
MO coefficients and basis functions, we get partitioning of the
response MO into regular ϕr (10)Mu

i and magnetic ϕ
m(10)Mu
i part,

ϕ
(10)Mu
i ≡ ϕ

r (10)Mu
i + ϕ

m(10)Mu
i , (19)

where

ϕ
r (10)Mu
i ≡ *.

,

CL(10)Mu
λi χλ

CS(10)Mu
λi χ

S(00)
λ

+/
-
,

ϕ
m(10)Mu
i ≡ *

,

0

CS(00)
λi χ

S(10)Mu
λ

+
-
, (20)

χ
S(00)
λ ≡ 1

2c
σ⃗ · p⃗ χλ, χ

S(10)Mu
λ ≡ 1

2c2



r⃗M × σ⃗
r3
M

u
χλ. (21)

For ϕr (10)Mu
i , the perturbed coefficients for both the large and

small components are needed. Since the unperturbed atomic
orbital basis covers the same space as the unperturbed MOs,
we can expand the regular part of response spinor (19) in the
basis of unperturbed MOs,

ϕ
r (10)Mu
i = βMu

pi ϕ
(00)
p , (22)

where index p runs over occupied as well as all unoccupied
(positive- and negative-energy) MOs.

Since the detailed derivation of equations for matrix DKS
method in the framework of RMB basis set (mDKS-RMB) was
discussed elsewhere,24 below we will summarize only the final
equations. For the sake of simplicity, in the following, we will
employ the shorthand notation CL(00)

λi = CL
i and CS(00)

λi = CS
i .

For the beta coefficients indexed by occupied indices, we
obtain the following:

(
βMu
i j

)∗
+ βMu

ji = −
(
CL†

j CS†
j

) *.
,

0 0

0
1

2c2 Λ̃
P

µM
u

+/
-
*
,

CL
i

CS
i

+
-
,

(23)

where(
Λ̃

P

µM
u

)
λτ
≡ 1

2c


χλ

������



r⃗M × σ⃗
r3
M

u
σ⃗ · p⃗

������
χτ


+ h.c. (24)

For the βuMai coefficients, we obtain the following:

βMu
ai =

(
ε
(00)
i − ε(00)

a

)−1 (
CL†

a CS†
a

)
*..
,

K
xc, L, Mu

Λ̃
P

µM
u

Λ̃
P

µM
u

K
xc, S, Mu − Λ̃P

µM
u
−
ε
(00)
i

2c2 Λ̃
P

µM
u

+//
-

*
,

CL
i

CS
i

+
-
, (25)

where ε
(00)
i are unperturbed one-electron energies. Contri-

butions from the exchange-correlation kernel Kxc, L, Mu and
Kxc, S, Mu,

�
K

xc, L, Mu
�
λτ
≡ d2E(µ⃗M, µ⃗N )

xc

dµM
u dPLL

τλ

������µ⃗M=µ⃗N=0

,

�
K

xc, S, Mu
�
λτ
≡ d2E(µ⃗M, µ⃗N )

xc

dµM
u dPSS

τλ

������µ⃗M=µ⃗N=0

, (26)

depend on the response of spin densities (and their gradients),

ρ
(10)Mu
k

= ϕ
(00)†
i Σkϕ

(10)Mu
i + c.c., k ∈ {1,2,3} , (27)

and thus are responsible for the coupled character of the
Eq. (25). Unperturbed MOs ϕ

(00)
i and one-electron energies

ε
(00)
i are solutions of mDKS-RKB equations (for more details

see, for example, Ref. 10). In Eq. (26), PLL ≡ CL
i CL†

i
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and PSS ≡ CS
i CS†

i are density matrices for large and small
component, respectively.

Since the iterative procedure for βMu
ai coefficients is the

time-determining step, it is highly desirable to decrease the
computational cost of kernel matrix elements evaluation. For
this purpose, we will take advantage of the ideas of Dunlap27

and Laikov,28 who proposed to use the density expansion
obtained from the robust and variational Coulomb fitting for
the representation of exchange-correlation functional. The
approach has already been extended to the four-component
DFT case by Belpassi et al.29 Here, however, we have
investigated the possibility to adopt the idea of Laikov also
for the calculation of second-order molecular properties in the
formalism of non-collinear four-component DFT. Below, we
will discuss only those parts of the scheme proposed in Ref. 28,
which will illustrate the scaling properties of the approach and
non-collinear form of the exchange-correlation functional.

The starting point of the present mDKS-RMB-RI-JK
method is the expansion of electron density (k = 0) and spin-
densities (k = 1,2,3) as linear combinations of atom-centered
auxiliary (or fitting) functions {ξ}, giving approximate density
ρ̃k,

ρ̃k(r⃗) = dkγξγ(r⃗) ≈ ρk(r⃗). (28)

The fitting coefficients dkγ are obtained by minimizing the
density residue,

min
d
(ρk − ρ̃k |ρk − ρ̃k), (29)

subject to the constraint of charge and spin conservation,

∀k ∈ {0,1,2,3} (ρk) = ( ρ̃k) ,
where ( ) denotes integral over R3. (30)

In the case of the Coulomb metric applied, the resulting fitting
coefficients are calculated as follows:

dkγ = (γ |τ)−1[(τ |ρk) + λk(τ)], (31)

which involves the calculation of classical Coulomb integrals,
denoted here as ( | ), as well as the Lagrange multiplier of the
imposed constraint,

λk =
(ρk) − (τ)(τ |η)−1(η |ρk)

(τ)(τ |η)−1(η) , (32)

where γ, τ,η denote fitting functions. The approximate density
is then used for robust fit of the Coulomb potential30 in the
absence of the magnetic fields and the approximate exchange-
correlation energy density ε̃xc in both the absence and presence
of magnetic fields (for the sake of simplicity, we omit here
the explicit dependence of the exchange-correlation energy
density on the gradients of electron density and spin density),

ε̃xc ≡ εxc
�
ρ̃±(r⃗)� , ρ̃±(r⃗) = ρ̃0 ± | ρ̃| ,
| ρ̃| ≡


ρ̃2

1 + ρ̃2
2 + ρ̃2

3. (33)

As a consequence, we get approximate exchange-correlation
energy Ẽxc and approximate exchange-correlation potential,
taken (in the matrix formulation) as the derivative of the
exchange-correlation energy with respect to density matrix,

�
Ṽxc

�
λτ
=

dẼxc

dPτλ
, P ≡ CC†. (34)

After expanding the approximate electron density and spin-
densities using fitting coefficients dkγ and fitting functions ξγ,
Ṽxc is obtained in the form,

�
Ṽxc

�
λτ
=

ddkγ

dPτλ


υ̃k

xc

{ ρ̃k(r⃗)}3
k=0


ξγ(r⃗)dV,

k ∈ {0,1,2,3} . (35)

In Eq. (31),

υ̃±xc ≡
δε̃xc

δ ρ̃±
, υ̃0

xc ≡
1
2
�
υ̃+xc + υ̃

−
xc
�
,

υ̃lxc ≡
1
2
�
υ̃+xc − υ̃−xc

� ρ̃l
| ρ̃| , l ∈ {1,2,3} . (36)

Note that in the absence of the magnetic fields and for
the ground state obeying the time reversal symmetry spin-
densities, ρ̃l are zero; therefore, υ̃lxc vanishes. However, in the
presence of magnetic fields, it is not true anymore and spin-
densities are crucial in calculation of kernel matrix elements
(Eq. (26)). In this work, matrix elements of the exchange-
correlation kernel (26) are calculated using symmetric numeric
derivative of matrix elements of the exchange-correlation
potential (Eq. (35)).

Let us compare the computational cost of approaches
with and without the density fitting applied to the exchange-
correlation kernel elements. In the computational scheme em-
ploying fitting, Eq. (35), the term


υ̃k

xc ξγ(r⃗)dV is independent
on atomic basis functions and is, therefore, calculated only
once. Its computational cost is NGPNAF, where NAF is the size
of fitting basis and NGP is the number of points of the numerical
integration grid. The vector of these integrals (containing
4xNAF elements) is then contracted with

ddkγ
dPτλ

on the fly
when evaluating the Coulomb integrals to save computational
time. The computational cost of the calculation of the matrix
elements of the approximate exchange-correlation potential is
NAFN2

AO, where NAO is the number of atomic basis functions.
On the other hand, the conventional approach (for

simplicity, we will consider only large-large block),
�
V L

xc
�
λτ
=


χλ

�
υk

xc
�
χτ

�
, (37)

where for every unique pair of λ, τ, we have to go over NGP
operations (we integrate over all grid points) yields NGPN2

AO.
Given that in most cases, NGP ≫ NAF, we can see that using
fitted kernel is promising considerable speedup of the whole
calculation.

The final expression for the reduced indirect spin-spin
coupling tensor can be written as follows:

KMN
uv ≡ KD,MN

uv + KP0,MN
uv + KP1,MN

uv , (38)

where

KD,MN
uv =


ϕ
m(10)Mu
i

���D
(01)Nv ��� ϕ

(00)
i


+


ϕ
(00)
i

���D
(01)Nv ��� ϕ

m(10)Mu
i


, (39)

KP0,MN
uv =

(
βMu
i j

)∗
+ βMu

ji

 
ϕ
(00)
i

���D
(01)Nv ��� ϕ

(00)
j


, (40)

KP1,MN
uv = 2Rel


βMu
ai


ϕ
(00)
i

���D
(01)Nv ��� ϕ

(00)
a


. (41)

In this work, we have implemented both approaches for
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evaluating the matrix elements of the exchange-correlation
kernel. The conventional (fitting-free) option will serve as
a benchmark method, allowing us to control the errors
introduced into exchange-correlation term by density-fitting
and to estimate the gain in the computational time.

Terminology

In what follows, we will use “exact kernel” as a shorthand
expression for “exchange-correlation kernel without density-
fitting,” in contrast to “approximate kernel,” which will
stand for “exchange-correlation kernel obtained with density-
fitting.” It should be understood that our “exact” approach is
far from being exact in the physical and mathematical meaning
of the word.

COMPUTATIONAL DETAILS

Geometries

For the XH4 (X = C, Si, Ge, Sn, and Pb) series (Tables I
and II), we used the same geometries as in Ref. 24. For the XH
series (X = F, Cl, Br, and I), the internuclear distances were
taken the same as in Ref. 31. For the series {CH4−n(HgX)n}
(X = Cl, Br, I, and CN), the geometries were taken from
Ref. 32. For species in Table 5, the geometry optimization in
presence of 2 solvent molecules has been carried on a few
chosen species at the B3LYP/MWB level, using the Gaussian
03 program package.33

Exchange-correlation functionals

We have used either the local density approxima-
tion with Slater exchange and VWN correlation34 (termed
SVWN) or the Generalized Gradient Approximation (GGA)
functionals of Becke exchange35 with Perdew correlation36

functional (termed BP86), and Perdew-Burke-Ernzerhof
exchange-correlation functional (termed PBE).37 Derivatives
of exchange-correlation potential were taken numerically. The
step for numerical derivation of kernel has been 10−3 and 10−6

for fitted and exact kernels, respectively.

TABLE I. Comparison of the calculated 1J(X–H) [Hz] in this work with
results obtained by different methods and experimental data in XH4 (X
= 13C, 29Si, 73Ge, 119Sn, 207Pb) series.

Method CH4 SiH4 GeH4 SnH4 PbH4

NRa 121.2 −195.9 −80.0 −1241.4 1242.4
Sc. ZORAb 133.3 −172.7 −74.9 −1584.5 2398.7
mDKS-RMBa 122.0 −201.6 −90.4 −1742.2 2345.3
This work 121.0 −198.7 −96.5 −1742.9 2495.2
Expt. 120.1c −201.1d −97.6e −1933.3f 2594; 2794g

aReference 24.
bReference 44.
cReference 45.
dReference 46.
eReference 47.
f Reference 48.
gValues estimated in Refs. 49 and 50 on the basis of experimental values for methyl-
substituted plumbanes.

TABLE II. Comparison of the 2J(H–H) [Hz] calculated in this work with
results obtained by different methods and experimental data in XH4 (X = 13C,
29Si, 73Ge, 119Sn, 207Pb) series.

Method CH4 SiH4 GeH4 SnH4 PbH4

NRa −13.39 −0.89 5.41 4.47 7.00
Sc. ZORAb −7.62 2.36 6.08 13.94 34.23
mDKS-RMBa −13.50 −0.56 7.79 14.30 30.87
This work −13.34 −1.33 6.66 13.06 36.44
Expt. −12.40c 2.75c 7.69d 15.3c . . .

aReference 24.
bReference 44.
cReference 52.
dReference 53.

Orbital basis sets

We have used fully uncontracted Gaussian-type orbital
basis sets of triple-zeta quality. For light elements (H, C, N,
O, F, Si, and Cl), we employed the uncontracted polarization-
consistent basis set of Jensen,38 that have been specifically
designed for calculation of spin-spin coupling constants at
the HF or DFT level of theory. We also need to mention
another basis set of Jensen38 (termed pc-2), which was used
for generating the auxiliary basis (see the next paragraph)
for light atoms. For heavy elements (Ge, Br, Ag, Cd, Sn, I,
Au, Hg, Tl, and Pb), the bases used were those of Dyall.39

For elements Cu and Zn, where Dyall’s bases were not
available, we used triple-zeta Balabanov-Peterson basis.40 The
final sizes of atomic bases were [8s3p2d] (H), [12s7p3d2f]
(C), [12s7p3d2f] (N), [12s7p3d2f] (O), [15s11p3d2f] (Si),
[15s11p3d2f] (Cl), [23s16p10d] (Ge), [23s16p10d] (Br),
[28s20p13d] (Ag), [28s20p13d] (Cd), [28s21p15d] (Sn),
[28s21p15d] (I), [30s24p15d10f] (Au), [30s24p15d10f] (Hg),
[30s26p17d11f] (Tl), [30s26p17d11f] (Pb), [20s16p8d2f]
(Cu), and [20s16p8d2f] (Zn).

Auxiliary bases

For fitting the electron density and spin densities, the
auxiliary basis sets were generated from pc-2 basis38 (for light
elements) and from triple-zeta bases39,40 (for heavy elements)
in the following way: s-exponents were chosen as doubles of
the s-exponents in the orbital basis; p- and d-sets (f- and g-sets)
were composed of identical exponents, covering the range of
p-functions (d-functions) in the orbital basis set multiplied by
two. All auxiliary basis sets were modified in even-tempered
manner41 ensuring that towards the low-exponent (“flat”) end
of every angular momentum the ratio between exponents is
constant.

Nuclear g-values

We used the following nuclear g-values: 5.585 69 for 1H,
1.404 82 for 13C, −1.110 58 for 29Si, −0.195 44 for 73Ge,
−2.094 56 for 119Sn, 1.185 17 for 207Pb, −0.566 38 for 15N,
5.257 74 for 19F, 0.547 92 for 35Cl, 1.513 71 for 81Br, 1.125 31
for 127I, −0.227 36 for 107Ag, −1.244 60 for 113Cd, 0.097 16
for 197Au, 0.350 08 for 67Zn, 3.276 43 for 205Tl, 1.484 90 for
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63Cu, and 1.011 77 for 199Hg. The g-values were taken from
Ref. 42.

In our work, the finite-size Gaussian-type model41 was
used for both the nuclear charge and atomic moment distribu-
tion.25 For all atoms except hydrogen, a grid of 256 radial and
110 angular points has been used. For hydrogen, we used 128
radial and 86 angular points.

All calculations were performed sequentially using In-
tel(R) Xeon(R) CPU@2.60 GHz processor (i.e., without
parallelization).

RESULTS AND DISCUSSION

In this section, we will address three features that will
enable us to evaluate the usefulness of the newly developed
approach. With the exact kernel as a reference scheme, we
will analyze the accuracy of the approximate kernel approach.
Second, we will estimate the gain in the computational time.
The last part of this section will be devoted to comparison with
experimental values.

Accuracy of the new approach compared
to the reference method

The use of the fitted total and spin-densities for evaluation
of the matrix elements of the kernel of the exchange-
correlation potential can potentially lead to less accurate
results. Since we also implemented an approach without
involving the fit of the electron densities, we can address this
issue by comparing the results obtained with both approaches.
We performed the calculations for a representative set of
63 indirect nuclear spin-spin couplings (1J(H–H), 2J(H–H),
1J(H–X) (X = C, Si, Ge, Sn, Pb), 1J(H–X) (X = F, Cl, Br, I),
2J(H–Hg), 3J(C–Hg), 1J(C–X) (X = Zn, Cd, Tl, Hg, Cu, Au,
Ag), 2J(N–Cd) (X = Zn, Cd, Tl, Hg, Cu, Au, Ag), and 1J(N–X)
(X = Cu, Au, Ag)) employing both types of the exchange-
correlation kernel. The relation between exact and fitted kernel
calculation is plotted in Fig. 1. For the data underlying Fig. 1,
see Table S1 in supplementary material.43

FIG. 1. Correlation between the results obtained with approximate and exact
kernels. The dashed line is the linear fit for the set of points.

Given the high sensitivity of the calculated spin-spin
couplings to all computational aspects, the agreement between
the results obtained with approximate and exact kernels is
rather good. To show more details, the central (most crowded)
part of the plot is also drawn separately in Fig. S1 in
supplementary material.43 The difference between couplings
is influenced by gyromagnetic values; therefore’ the ratios
of the corresponding counterparts have been calculated and
basic statistical analysis performed on them (see Table S1 in
supplementary material43). The average of 1.11 and median
1.04 confirms that fitted kernel gives systematically larger
coupling (in absolute values). The standard deviation σ is
equal to 0.29. We have identified an outlier (“outlier” being
defined as coupling whose Jappr./Jexact ratio falls outside the
range of ±2σ) 2J(H–H) coupling in SiH4, where Jappr = −1.33
and Jexact = −0.42. However, this coupling is the smallest
from the whole set and not very relevant to the analysis
based on ratios. Other near-outliers are 2J(H–Hg) couplings
in CH2(HgCl)2 and CH(HgCl)3, having Jappr./Jexact ratios
1.41 and 1.57, respectively. Generally, the spin-spin couplings
in halogene containing species have shown sensitivity with
respect to the polarization functions in the auxiliary basis on
halogene (especially bromine). It is probably connected with
the presence of easily polarizable lone pairs. We have to note
that in using the approximate kernel technique, the choice of
the auxiliary basis for fitting electron densities is crucial: from
one side, tight exponents should be sufficient to adequately
fit the electron densities in the neighborhood of nuclei, and
from the other side, they may lead to numerical instabilities
when the fitting is done with the Coulomb metric. In the fit
with the Coulomb metric, more weight is put at the valence
area. When the tails of the tight exponents are adjusted for the
fit in this area, the quality of the fit in the neighborhood of
nuclei may suffer. One should also keep in mind that in case
of GGA exchange-correlation potentials, estimation of the
density gradients from the fitted total and spin densities is an
additional source of losing the numerical accuracy. Therefore,
the agreement between the results obtained with approximate
and exact kernel in case of the local potential is much better.

Time save

Attractiveness of the fitted kernel technique lies in the time
save for otherwise very demanding four-component spin-spin
coupling calculation. Fig. 2 compares the time save obtained
per one iteration of self-consistent field for β

µM
u

ai (onwards
dubbed as β -SCF). The data, upon which the Fig. 2 is based,
are available in Table S2 in supplementary material.43

For small systems, the time per iteration for both
approaches is almost the same. However, when the number
of basis functions reaches about 700 the difference became
more prominent. The highest speedup can be expected (see
“Theory” section) in species with high NGP/NAF ratio, where
NGP is the number of grid points and NAF is the number of
auxiliary (fitting) functions. Examples are CH4 with NGP/NAF
of 386.05 and δiter = 42.53, where δiter is the ratio between
the timing for one iteration in calculations with the exact
and approximate kernels, respectively; HF with NGP/NAF of
323.70 and δiter = 32.5; SiH4 with NGP/NAF of 323.73 and
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FIG. 2. Comparison of time per iteration of β-SCF. The time is given in
seconds. Open circles show the time for the calculations with the exact
kernel and black triangles with the approximate one. All calculations were
performed sequentially using Intel(R) Xeon(R) CPU@2.60 GHz processor.

δiter = 36.58. The opposite examples are CH(HgCl)3 with
NGP/NAF of 89.59 and δiter = 7.46 or C(HgCl)4 with NGP/NAF
of 83.51 and δiter = 6.78.

The average speedup for the whole calculation is about
8.5. The graph for total speedup is visually very similar to
Fig. 2 and therefore not shown here (the total timings are given
in Table S2 of supplementary material43). We have to note that
the speedup gained per iteration is somewhat diminished in
the total speedup. The main reason behind this is that the
βu-SCF convergence is usually slower with the approximate
kernel than in the reference method. In the worst cases, the
approximate kernel technique required twice more iteration to
reach convergence in comparison with the reference method,
but even in this case, a considerable overall speedup was
achieved.

Comparison with experiment

In this part, we compare the results, obtained with the
newly developed method of fitted kernel, with experimental
couplings and, if possible, with another relativistic approach,
namely, scalar ZORA (abbreviated as sc. ZORA). This

comparison should provide some estimate where the new
approach is placed among other available computational
methods. At the same time, we have to note that in the
present work, we were not able to use the hybrid exchange-
correlation potentials employed by other authors, since the
fully relativistic calculations of spin-spin couplings with
hybrid functionals are undergoing a thorough testing at the
moment.

XH4 series

With reference to work of Repiský et al.,24 we recalculated
1J(H–X) and 2J(H–H) in the benchmark series of XH4 (X
= 13C, 29Si, 73Ge, 119Sn, 207Pb), employing the same geometries
as in Ref. 24. The molecules of XH4 series have well-known,
well-defined geometry, little solvent effect because of the
low X–H bond’s polarity and the experimental data for their
coupling constants are available. At the same time, X ranges
from light to heavy atoms. All these make them an excellent
benchmark set for a newly developed method with aspirations
for relativistic spin-spin coupling. The results are collected
in Tables I and II. Our results as well as the results taken
from Refs. 24 and 44 were obtained with BP86 exchange-
correlation functional.

As expected, for light central atom (C, Si), we get results
very close to the non-relativistic case. In the whole series, our
results get closer to the experiment than those obtained with
scalar ZORA. The improvement is marked most notably in
SnH4 and PbH4, where four component approach covers 92%
and 93% of the experimental value, whereas scalar ZORA
covers only 83% and 89%. We also have to note that in
contrast to our calculations, the ZORA results were obtained
with a point nucleus model. Therefore, one can expect that
with a physically more realistic finite size nucleus model for
the charge and magnetic moment distribution, one can expect
that the ZORA values would be further decreased by about
13% for 1J(Pb–H), for example.25 From the other side, the
inclusion of additional tight exponents in the basis set for a
heavy element will probably yield somewhat larger value in
the ZORA calculations as indicated in Ref. 51.

In the case of 2J(H–H) couplings, all relativistic methods
provide rather close results. We can, therefore, claim that

TABLE III. Comparison of the spin-spin couplings [Hz] calculated in this work with experimental data in
CH4−n(HgX)n (X = Cl, Br, I, CN). Experimental data are taken from Ref. 55 unless specified otherwise.

2J (199Hg–H) 1J (13CH4−n–H) 1J (199Hg–13C N) 1J (199Hg–CH4−n)

X n This work Expt. This work Expt. This work Expt. This work Expt.

Cl 1 −168 ±221 139 137 929 1678
2 −142 ±172 151 147 966 1782
3 −130 ±124 152 153 929 1827
4 739 1797

Br 1 −168 ±213 139a 139 820 1625b

I 1 −154 ±180 138 138 758 1543b

CN 2 −144 ±157 145 142 934 1249 811 1488
3 −141 ±127 146 165 1085 1331 744 1455
4 1213 1428 595

aReference 56.
bReference 57.
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TABLE IV. Solvation effect on 1J (199Hg–C) [Hz] for compounds MeHgX (X = Cl, Br, I) and Hg(CN)2.

Without solvent With two solvent molecules

Species Solvent Sc. ZORAa This work Sc. ZORAa This workb This work Expt.

MeHgCl DMSO 1000.6 928.6 1415.5 954.8 1487.1 1673.8c

MeHgBr DMSO 1010.9 809.7 1380.2 925.7 1466.0 1630.9c

MeHgI DMSO 963.6 744.6 1364.9 840.3 1395.4 1540c

Hg(CN)2 MeOH 2411.2 1989.7d 2790.2 2022.7d 2486.4d 3142.5e

aReference 58.
bGeometry optimized in presence of two solvent molecules, spin-spin coupling calculations done without the two solvent
molecules.
cReference 59.
dAverage from both cyano carbons.
eReference 60.

spin-orbit effects for these couplings are not important. The
only problematic case is the coupling in SiH4, where our
method gives different sign than scalar ZORA. Still, our result
is in agreement with the value obtained with non-relativistic
post-Hartree-Fock (see Ref. 54, which reports −1.45 Hz for
the discussed coupling), which contradicts both scalar ZORA
and experiment. We see that our new method follows the
experimental values in satisfactory way, as well as the results
of its predecessor.24

CH4−n(HgX)n (X = Cl,Br, I,CN) series

For the second benchmark series, we have chosen spin-
spin couplings in Hg containing compounds—CH4−n(HgX)n
(X = Cl, Br, I, CN). The obtained results are collected in
Table III together with experimental data.

The calculated 1J(C–H) spin-spin couplings are in perfect
agreement with experiment. Agreement is slightly worse for
2J(199Hg–H) values. The calculated 1J(199Hg–13CN) is under-
estimated by about 20%-30% compared to the experimental
values. The worst agreement is observed for 1J (199Hg–CH4−n),
where the computed values are only about one half of the
experimental ones. While certainly the deficiencies of DFT
may contribute to the discrepancy, we decided to look more
carefully at the experimental conditions.

Solvent effect

Experimental data given Table III were obtained in
solution. To roughly estimate the environment effects on
1J(Hg–C) couplings, geometry optimization in the presence
of 2 solvent molecules has been carried on a HgMeX (X
= Cl, Br, I) and Hg(CN)2 at the B3LYP/MWB level, using
the Gaussian 0333 program package. Spin-spin couplings
have then been calculated in two ways—with and without
the solvent molecules. The results, compared with the ones
obtained by Autschbach and Ziegler using scalar ZORA,58 are
displayed in Table IV.

In all investigated cases, the spin-spin coupling increases
substantially in the presence of solvent. This effect is less pro-
nounced in Hg(CN)2. The sole geometry change contributes
6.6% of the total increase in Hg(CN)2, 14.7% in MeHgI, and
17.7% in MeHgBr. Thus, in the case of investigated molecules,
not only the geometry change but also donor-acceptor bonds
between solvent and the coordinatively unsaturated mercury

atom must be taken into account. Results obtained in this
work can be compared with their ZORA58 counterparts only
loosely, as there are at least two distinctive factors. In Ref. 58,
Vosko-Wilk-Nusair exchange-correlation functional34 with
X-α61 model for the response kernel was used, while this work
employs BP86. Moreover, the point nucleus model for charge
distribution used in Ref. 58 is known to give systematically
larger spin-spin couplings (in absolute values) than the finite
model,41 used in this work.

In this work, the solvent effect on spin-spin couplings was
estimated rather approximately. For a throughout study, more
solvent molecules should enter the picture (see Ref. 58) and
molecular dynamics simulation should be used to describe the
liquid. Still, the main conclusion—that solvent effects need to
be taken into account—is well seen even in our crude model.

CONCLUSIONS

In this work, a new method for efficient calculation
of indirect nuclear spin-spin couplings in context of four-
component matrix Dirac-Kohn-Sham approach was presented.
The new approach is aimed to speedup the bottleneck in the
solution of the coupled perturbed equations: evaluation of the
matrix elements of the kernel of the exchange-correlation
potential. For this, the Laikov scheme28 for using the fitted
electron density for evaluations of the matrix elements of
the exchange-correlation potential was extended to relativistic
framework and modified for the evaluation of the matrix
elements of the kernel of the exchange-correlation potential.

The new method was tested on a representative set of 63
spin-spin couplings (1J(H–H), 2J(H–H), 1J(H–X) (X = C, Si,
Ge, Sn, Pb), 1J(H–X) (X = F, Cl, Br, I), 2J(H–Hg), 3J(C–Hg),
1J(C–X) (X = Zn, Cd, Tl, Hg, Cu, Au, Ag), 2J(N–X) (X = Zn,
Cd, Tl, Hg, Cu, Au, Ag), and 1J(N–X) (X = Cu, Au, Ag)).
The obtained results were compared with the corresponding
results of the reference method with traditional evaluation of
the exchange-correlation kernel, i.e., without employing the
fitted electron densities. Overall good agreement between both
methods was observed, though the new approach tends to give
values by about 4%-5% higher than the reference method. On
the average, the solution of the coupled perturbed equations
in the new method is about 8.5 times faster compared to the
reference method. The gain in the computational time per
iteration was even higher but somewhat slower convergence
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damped the effect. Slower convergence is likely caused by
slightly less accurate evaluation of the matrix elements of
the exchange-correlation potential compared to the reference
method. In some cases, higher (than average) sensitivity of the
results to the choice of the auxiliary basis functions used for
the fit of the electron densities is observed, that also indicates
the necessity to pay special attention to the numerical aspects
of the new approach.

Pilot applications of the new method to NMR spin-spin
couplings in XH4 (X = 13C, 29Si, 73Ge, 119Sn, 207Pb) and
HgMeX (X = Cl, Br, I) series and Hg(CN)2 were performed,
and the obtained results were compared to available exper-
imental values. While for 1J(C–H) and 2J(H–H) in XH4 (X
= 13C, 29Si, 73Ge, 119Sn, 207Pb) series generally good agreement
with experiment was achieved, for the mercury containing
compounds, the situation was different. The quality of the
obtained results strongly depended on the type of coupling. For
example, while the calculated 1J(C − H) spin-spin couplings
were in perfect agreement with experiment, 1J(199Hg–CH4−n)
couplings were underestimated by about 50%. To investigate
the source of discrepancy, we tried at least approximately to
simulate experimental conditions and include solvent effects
into account. This was done by optimizing the geometry and
performing additional calculations of 1J(199Hg–C) in HgMeX
(X = Cl, Br, I) and Hg(CN)2 in the presence of two solvent
molecules. Even this crude model dramatically improved the
agreement with experiment, in accord with the previous results
of Autschbach and Ziegler using scalar ZORA.58

Although highly efficient parallelized method for calcula-
tions of indirect nuclear spin-spin couplings without involving
the fitted electron densities within the four-component matrix
Dirac-Kohn-Sham approach would be more preferable, for the
time being, the new approach presents a reasonable compro-
mise between the accuracy and computational efficiency.
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